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Methods of calibration to optical trapping force upon
non-spherical cells
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The dynamical equation of a trapping cell is solved to find calibration methods for the trapping force, and
two methods are compared by synthetic experiment data. Results indicate that: Boltzmann distribution
method (BDM) is available for the force calibration of non-spherical or anisotropic cells in arbitrary trap
potential; the mean square displacement method (MSDM) is available only for a symmetric harmonic
optical trap. The spatial resolution requirement of the calibration system is about a nanometer. The
results agree with the reported experiments.
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Optical tweezers (OTs) have become a popular manipu-
lation and force measurement tool in cellular and molecu-
lar biology[1−3]. Presently, there is no theory that can be
used to directly calculate the trapping force for cells. The
force must be determined empirically, and the force cali-
bration is necessary. There are a number of ways to cal-
ibrate optical trapping force[4−7]. These ways are avail-
able for spherical isotropic particles and the harmonic
potential profiles. Biological cells, organisms, and biolog-
ical structures in a trap often have complex shapes and
typically have unknown optical properties, hence, the po-
tential profiles are sometimes inharmonic and asymmet-
ric. Therefore, it is desired to demonstrate an available
optical trap force calibration method for non-spherical
and anisotropic cells with a general potential profiles.

In this paper, we assume biological cells as Brownian
particles in OTs, and report on solving the dynamical
equation of a cell in an optical trap. According to the
results obtained, we analyze available force calibration
methods directly for non-spherical cells in a common po-
tential. The results are applied to the case of a har-
monic approximate trapping potential. The two meth-
ods, namely, Boltzmann distribution method (BDM) and
mean square displacement method (MSDM), are com-
pared by synthetic experiment data.

As the cells size is in micrometer range, they can be
considered as Brownian particles. The trap in OT is or-
dinary divided into the lateral and axial directions to be
discussed. For simplicity, we consider in the following
only the projection onto the lateral x axis and treat the
problem as one-dimensional motion. We suppose that
the cell is at x = 0 at initial time. The motion equation
of a cell with mass m laying out on a horizontal plane is

−α
dx

dt
+ Fx(t) − dU(x)

dx
= m

d2x

dt2
, (1)

where α is the frictional coefficient; −dU(x)
dx = Tx is the

force acting on the cell by OTs, which is called optical
trapping force; U(x) is the cell’s potential; Fx(t), which
represents the Langevin force by thermal fluctuation ac-

tivating, obeys

〈Fx(t)〉 = 0
〈Fx(t)Fx(t′)〉 = 2αkBTδ(t − t′) , (2)

where kB is the Boltzmann constant and T is the sample
temperature. For large frictional coefficient α, the cell
has low Reynolds number, we may neglect the second
derivative with respect to time in Eq. (1). Thus, Eq. (1)
can be rewritten as

−α
dx

dt
+ Fx(t) − dU(x)

dx
= 0. (3)

Corresponding to Eq. (3), the Fokker-Planck equation
for the probability distribution P (x, t) of the cell takes
the form

∂P

∂t
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∂
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[
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∂
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P

]
. (4)

For steady-station solution, we have

∂

∂x

[
dU(x)

dx
P + kBT

∂

∂x
P

]
= 0. (5)

It is easy to test that the particular solution of Eq. (5)
is

P (x) = C exp
(
−U(x)

kBT

)
, (6)

where C is the normalized constant (
∫

P (x)dx = 1).
Equation (6) illustrates that the trapped cell obeys Boltz-
mann distribution.

The different interaction models between an OT and
different cells implies different potential functions U(x).
By measuring potential U(x), we can calculate the force

acting on the cell by −dU(x)

dx
= Tx. This procedure is

called OTs trapping force calibration.
According to Eq. (6), a random shape cell potential can

be measured and the corresponding trapping force can be
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calibrated. The method is that by measuring the proba-
bility density P (x), the potential experienced by the cell
can be calculated by

U(x) = −kBT ln P (x) + kBT ln C. (7)

The last term determines the potential offset and is
neglected by choosing zero potential value. The corre-
sponding potential U(x) may be fitted numerically. This
procedure is called BDM. In principles, BDM is suitable
for all cell sizes and shapes, and for arbitrary trapping
fields. There have been some experiments in agreement
with the conclusion for non-spherical particles[8,9].

For the harmonic potential, U(x) = 1
2kx2, k is the trap

stiffness coefficient, the potential can be obtained by
measuring k through the procedure called trap stiffness
calibration (TSC). In the case, the calibration of the trap
force translates into TSC, we have

P (x) = C exp
(
− x2

2kBT/k

)
. (8)

Equation (8) is applicable for anisotropic cells[10,11].
Two approaches of TSC can be obtained, one is BDM,
the other is MSDM. By measuring the mean square dis-
placement 〈x2〉, k can be obtained as k = kBT/〈x2〉[12].

We adopt
√〈x2〉 =

√
kBT

k to calculate the spatial
resolution for the calibration system. For bio-cell ex-
periments, we use T ∼ 3 × 102 K, presently there
is no experiment data reported for cell’s trap stiffness
coefficient. For the polystyrene micro-spheres of 0.5-
μm radius (refractive index 1.58 in Ref. [13]), the trap
stiffness coefficient is about 10−5 N/m. By numerical
simulation, Ref. [9] gave that the trap stiffness coefficient
of 50-nm-in-radius polystyrene beads (refractive index
1.56) are about 4.5 times of those of artificial CHO (Chi-
nese hamster ovary, refractive index 1.38) cell, and con-
sidered that the difference in the trap stiffness coefficient
mainly results from the difference in the refractive indices
between them. According to these data, we may calcu-
late the trap stiffness coefficient of microns-in-radius cell
in the order of 10−5−10−6 N/m. So the scope of displace-
ment from the cell to the center of optical trap is about
10−8 m, we use one tenth of this value (1 nm) as the spa-
tial resolution for the calibration system. The resolution
is nanometer, suitable for inharmonic and asymmetric
potential cases also.

In order to compare MSDM and BDM, we generated
samples of synthetic data ptr(xi) with a prefixed set of
parameters ktr = 10−5 N/m, T = 300 K, the super-
script “tr” means true data or equivalently error-free
data. Therefore, discrete values of ptr(xi) in a given range
of xi = −7,−6, · · · , 0, · · · , 6, 7 were obtained by the re-
lation: ptr(xi) = exp(−ktrx2

i /2kBT )) = exp(−x2
i /8.28),

here the unit of xi is 10−8 m.
We use pex(xi) to express the experimental data which

involve errors, different levels of the pseudo experimen-
tal error δ are introduced in the probability. There-
fore, discrete values of pex(xi) in the range of xi =
−7,−6, · · · , 0, · · · , 6, 7 were obtained as

pex(xi) = ptr(xi − x0)(1 + δG), (9)

where G is the Gaussian random number with zero mean
and unit variance which is included to simulate the exper-
imental noise, x0 is the displacement offset between the
center of the trap and the origin of position coordinate.
Therefore, according to Eq. (9), experiment data with
different levels of error (δ = 0.02, 0.1, 0.5; x0 = 0, 10, 20
nm) were produced. The two calibrating procedures were
applied to the data to obtain the potential energy. The
representative results are shown in Fig. 1, where the po-
tential energy as a function of displacement for different
displacement offsets x0 (x0 = 0, 10, 20 nm) at the same
experiment error δ (δ = 0.5) are plotted. By using a har-
monic potential model, kex can be fitted. By comparing
kex obtained above with ktr = 10−5 N/m, the error is
measured as it is defined to express the fit goodness as

err =
|kex − ktr|

ktr
× 100%. (10)

The stiffness coefficient errors are listed in Table 1.
It is shown that BDM can be used to measure potential

Fig. 1. Potential energy y as a function of displacement x ob-
tained from synthetic data for different potential offsets x0 of
0 (a), 10 (b), and 20 nm (c). “D” represents the predictions
of the true data, “B” refers to the BDM, and “C” to MSDM.
The binomial equations fitted by the data accordingly are
included for comparison.



724 CHINESE OPTICS LETTERS / Vol. 4, No. 12 / December 10, 2006

Table 1. Stiffness Coefficient Errors from the Two Calibration
Methods in Various Cases (Unit: %)

Methods
δ = 0.02 δ = 0.1 δ = 0.5 δ = 0.5 δ = 0.5

x0 = 0 x0 = 0 x0 = 0 x0 = 10 nm x0 = 20 nm

BDM 1 2 5 6 7

MSDM 2 2 4 13 42

profiles which are allowed to be inharmonic and asym-
metric, but MSDM is only applicable for a harmonic po-
tential.

In summary, the interaction between cells and OTs are
expressed with potential function. Two calibration meth-
ods can be used for cellular optical trap forces calibration.
BDM is a all-purpose method, MSDM is only applicable
for a harmonic potential. The spatial resolution for the
calibration system is about a nanometer. The results can
be applied to analyze the optical force calibration meth-
ods for a trapped biological cell, and give references for
studying cells mechanics and light interaction with bio-
logical cells by OT technology.
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